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Abstract
We present a systematic method of constructing limit-quasiperiodic
structures with non-crystallographic point symmetries. Such structures are
different aperiodic-ordered structures from quasicrystals, and we call them
‘superquasicrystals’. They are sections of higher dimensional limit-periodic
structures constructed on ‘super-Bravais-lattices’. We enumerate important
super-Bravais-lattices. Superquasicrystals with strong self-similarities form
an important subclass. The simplest example is a two-dimensional octagonal
superquasicrystal.

PACS numbers: 61.44.Br, 61.50.Ah, 02.20.Hj

Quasicrystals (QCs) as well as the Penrose patterns are aperiodic-ordered structures having
not only long-range positional orders but also non-crystallographic point symmetries (NCPSs)
[1, 2]. Moreover, they have self-similarities, and are produced by substitution rules
(equivalently, inflation rules). They can be described alternatively as quasiperiodic point
sets, given as sections of higher dimensional crystals, or hypercrystals [3–5]. From the
viewpoint of aperiodic-ordered structures, however, there can be another type of self-similar
structures with long-range positional orders, namely, limit-quasiperiodic structures (LQPSs),
which are sections of higher dimensional limit-periodic structures [6]. An LQPS is usually
given as the set of vertices of an aperiodic tiling generated by a substitution rule with the Pisot
property [6–8]. On the other hand, a limit periodic structure and LQPSs are incorporated in
model sets, which are projections of some transcendental host structures (see [9] and references
cited therein). Since a limit-quasiperiodic structure is not periodic, it as well as a QC allows
any NCPS, and we shall call such a structure a ‘superquasicrystal’ (SQC). An SQC is a
section of a higher dimensional limit-periodic structure, which we shall call a supercrystal;
we must distinguish the supercrystal from a hypercrystal. Regrettably, no concrete example
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of SQCs has been known previously. In this letter, the following four points will be discussed.
(i) A super-Bravais-lattice, which is a geometric object in a Euclidean space, is introduced
as a host structure on which supercrystals are constructed. (ii) Important super-Bravais-
lattices with NCPSs are enumerated. (iii) It is shown that an SQC can have a self-similarity
characterized by a Pisot number which is severely restricted by the super-Bravais-lattice. (iv)
As the simplest example, an octagonal SQC is presented.

We begin with a brief review of QCs (for a fuller review, see [10]). The point groups which
are important in application to physical QCs include D8 (octagonal), D10 (decagonal) and D12

(dodecagonal) in two dimensions (2D) and Yh (icosahedral) in 3D; all these point groups are
isometric. A QC having one of these point groups is a d-dimensional section of a hypercrystal
in the 2d-dimensional space E2d with d = 2 or 3 being the number of dimensions of the
physical space Ed . The entities of the hypercrystal are not atoms but geometric objects called
hyperatoms (atomic surfaces, windows, etc), which are bounded open domains in the internal
space, E⊥

d , i.e., the orthogonal complement to Ed . We consider a hypercrystal constructed
by locating one kind of hyperatoms onto the sites of a Bravais lattice �̂ in E2d . There exists
only one Bravais lattice for each of the three 2D point groups, but there exist three types
of icosahedral Bravais lattices, namely, primitive, face-centred and body-centred types. An
infinite number of different QCs are obtained from a single hypercrystal by choosing different
sections which are parallel to Ed , and they form a so-called locally isomorphic class (LI
class) [3]. The point group Ĝ of �̂ is isomorphic with a non-crystallographic point group G
in d dimensions. More precisely, Ĝ = G ⊕ G⊥, where G and G⊥ (�G) are groups acting
onto Ed and E⊥

d , respectively. Let π and π⊥ be the projectors projecting E2d onto Ed and
E⊥

d , respectively. Then, � := π�̂ and �⊥ := π⊥�̂ are modules with d generators and are
dense sets. They have a scaling symmetry whose scale is a quadratic irrational, τ , where
τ = 1 +

√
2, 1

2 (1 +
√

5) or 2 +
√

3 for the case of the three 2D point groups, D8, D10 or D12,

respectively, while τ = 2 +
√

5 for the primitive-icosahedral case but τ = (1 +
√

5)/2 for
the other two icosahedral cases; τ is a Pisot number and also a unit in Z[τ ] := {n + mτ | n,

m ∈ Z}. Let ϕ be the scaling operation with the ratio τ . Then, any member of the infinite
group, G := 〈G,ϕ〉, generated by G and ϕ is an automorphism of �. A QC is ‘point diffractive’
in the sense that its structure factor is composed only of Bragg spots. The position vectors
of the Bragg spots form the Fourier module, which corresponds to the reciprocal lattice for
a periodic crystal. The Fourier module is given by �∗ := π�̂∗ ⊂ E∗

d with �̂∗ being the
reciprocal lattice of �̂ and E∗

d the dual space to Ed .
We have already seen several examples of triads of objects, {X,X⊥, X̂}, associated with

the three worlds, Ed,E
⊥
d and E2d , where X = πX̂ and X⊥ := π⊥X̂. Any member of a triad

uniquely determines the remaining two; in particular, X̂ = π−1X is the lifted version of X.
Many relationships are isomorphic among the three worlds, and a relationship in one of the
three worlds can be readily translated to those in the other two [4]; if X and X⊥ above are
sets, the symbol ‘⊥’ turns out a bijection from X onto X⊥. There exists an important triad
of linear maps {ϕ, ϕ⊥, ϕ̂} with ϕ⊥ being a scaling with the ratio τ̄ , the algebraic conjugate
of τ , whereas ϕ̂ = ϕ ⊕ ϕ⊥ is an automorphism of �̂: ϕ̂�̂ = �̂. It follows that a QC has a
self-similarity with ratio τ [4, 11].

Another important triad of linear maps is associated with a bi-similarity transformation
σ̂ = σ ⊕ σ⊥, where σ and σ⊥ are similarity transformations acting onto Ed and E⊥

d ,
respectively, while σ̂ satisfies �̂1 := σ̂ �̂ ⊂ �̂. �̂1 is the last member of the triads{
�1,�

⊥
1 , �̂1

}
, in which �1 = σ� and �⊥

1 = σ⊥�⊥ are similar submodules (SSMs) of
� and �⊥, respectively. Moreover, �1 as well as � is invariant against the action of G. We
shall denote by m the index of �1 in �: m := [� : �1]. The scaling transformation ϕ is
a special similarity transformation since it is invertible and, consequently, m = 1. However,
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if m > 1, � is a larger set than �1, and hence σ is not invertible in �. �̂1 in this case is a
sublattice of �̂ or, in the terminology of crystallography, a superlattice of �̂, and is divided
into m equivalent sublattices to �̂1. We shall call �̂1 a quasi-similar superlattice of �̂. The
similarity transformation σ combining an SSM �1 with � by �1 = σ� is, however, not
uniquely determined by �1 because any member of the set G(�1) := σG = Gσ satisfies
the same condition. The set of all the similarity ratios of the members of G(�1) is given by
{|σ |τ k | k ∈ Z} with |σ | being the similarity ratio of σ . Let B̂ be the set of all the quasi-similar
superlattices of �̂. Then, it is a member of a triad, {B,B⊥, B̂}, and B is the denumerable set of
all the SSMs of �. The set, �, of all the similarity transformations associated with B form a
semigroup. We may expect that there exists a bijection between B and the quotient semigroup,
�/G. This is true provided that, for the case of the 2D point group D12,G is slightly modified,
as done in the next paragraph.

Prior to proceeding to the subject of super-Bravais-lattices, we shall investigate in more
detail SSMs of � for the case of the 2D point group Dp with p = 8, 10 or 12. An important
member of B is the one written as σp = |σp|ρ2p with |σp| := 2 cos (π/p) and ρk being the
rotation operation through 2π/k [11, 12]. The index mp of the SSM, σp�, is equal to 2, 5
or 1 for p = 8, 10 or 12, respectively. Since σ12 is invertible and |σ12| = √

τ , we have to
redefine the map ϕ for p = 12 by σ12 and, correspondingly, the automorphism group G of �

is redefined. There exist two types of SSMs: we call �1 = σ� a type I or II SSM if σ is
chosen to be a simple scaling or not, respectively. A complete discussion for possible SSMs
has been made in [12]. A type I SSM is written with a positive number ν ∈ Z[τ ] as ν�,
and its index is given by m = [N(ν)]2 with N(ν) := νν̄. A simplest SSM for p = 12, for
example, is given by (1 +

√
3)�, whose index is equal to 4. On the other hand, type II SSMs

are somewhat complicated. We shall call a type II SSM proper if the point group Dp of �

leaves it invariant. If it is not proper, the common point group between it and � is equal to Cp.
In this letter, we shall ignore ‘improper’ type II SSMs (cf [11]). Then, there exist no type II
SSMs for p = 12. A simplest type II SSM for p = 8 or 10 is σp�. A general type II SSM is
written with ν ∈ Z[τ ] as νσp� and m = mp[N(ν)]2. We may write σ := νσp = |σ |ρ2p with
|σ | = ν|σp|. Then, σ 2� is identical to the type I SSM, |σ |2�, because (ρ2p)2 (=ρp) ∈ Dp.
It follows that |σ |2 ∈ Z[τ ]. In particular, |σ8|2 = 2 +

√
2 = √

2τ , and σ 2
8 � = √

2� for
p = 8 because τ� = �. Similarly, |σ10|2 = √

5τ and σ 2
10� = √

5� for p = 10. Note that
|σp| /∈ Z[τ ].

The modules �n := σn�,∀n ∈ N, satisfy � ⊃ �1 ⊃ �2 ⊃ · · · and [� : �n] = mn.
We shall denote by ‘

n≡’ the equivalence relationship introduced into � by the residue module,

�/�n. Its important property is the following: if 	
n≡ 	′ for 	, 	′ ∈ �, 	

n′
≡ 	′,∀n′ � n. As a

consequence, � becomes a normed module if a non-Archimedean norm of 	 ∈ � is defined by
‖	‖ := 1/2n with n being the largest number satisfying 	

n≡ 0. It is just a metric space called
an inverse system; different vectors in � are ‘coloured’ by different colours, and � is regarded
as a ‘coloured module’ with an infinite number of colours. This structure can be transferred
to �̂, yielding a 2d-dimensional coloured lattice, L. We shall call L a super-Bravais-lattice
because different supercrystals are constructed on it as shown shortly. Since �̂n := π−1�n is
superlattice of �̂,L is, intuitively, a recursive superlattice structure. The map σ as well as the
group G acts naturally onto L, and σL ⊂ L. We shall turn our arguments to the dual space
(or the reciprocal space). The modules �∗

n := σ−n�∗,∀n ∈ Z, satisfy �∗
n = σ�∗

n+1 ⊂ �∗
n+1.

The denumerable set �̂∗
∞ := π−1�∗

∞ with �∗
∞ := �∗

0 ∪ �∗
1 ∪ �∗

2 ∪ · · · is the dual module to
L. It is not finitely generated in contrast to �∗. It is invariant against the action of the infinite
group, 〈G, σ 〉. We can divide �∗

∞ into the disjoint sets, 
n := �∗
n − �∗

n−1, n ∈ Z, which
are not modules. They are invariant against the action of G and satisfy 
n = σ
n+1 and
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n ⊂ �∗
n. We may write as �∗

∞ = �∗
0 + 
1 + 
2 + · · · because �∗

0 is disjoint with 
n, n > 0.
Any vector in 
n is indexed with the generators of �∗

n by 2d integers.
In order to construct a supercrystal on the super-Bravais-lattice, L, we need a set A

consisting of all the allowed hyperatoms, whose diameters are assumed to be bounded by a
positive number. We can identify a hyperatom with its characteristic function on E⊥

d , and
A is embedded into L1, the function space with the p = 1 norm. Let α be a map from �

into A. Then, a supercrystal is specified by L and α; we shall denote it by S(L, α). The
hyperatoms in a supercrystal are not uniform but their shapes, sizes and/or orientations are
determined by the colours of the relevant sites. We assume α to be uniformly continuous in
the sense that, for any ε > 0, there exists an integer n such that ‖α	 − α	′ ‖1 < ε,∀	, 	′ ∈ �

with 	
n≡ 	′, where α	 ∈ A stands for the image of 	 ∈ �. The point group of the supercrystal

is identical to Ĝ if αG = G⊥α and A is invariant against the action of G⊥. The map fulfils
these conditions if α	 is, for instance, a regular p-gon whose size is given by f (‖	‖) with
f (x) being a continuous function bounded from both sides by two positive numbers. Let α

be a special map satisfying α	 = α	′ ,∀	, 	′ ∈ � with 	
n≡ 	′ for a specified positive integer

n. Then, S(L, α) degenerates into a hypercrystal whose translational group is given by �̂n.
If the supremum norm is introduced into the ‘function space’ of maps, {α}, a supercrystal can
be approximated in any precision in this norm by a hypercrystal to be called an approximant
hypercrystal. This means that the supercrystal is limit periodic [6].

An SQC obtained from the supercrystal, S(L, α), is parametrized by the phase vector,
φ ∈ E⊥

d , specifying the ‘level’ at which the section of the supercrystal is taken. It is represented
as S(L, α, φ) := S(L, α) ∩ (φ + Ed), which is a discrete subset of �. If identical point
scatters with the unit scattering strength are located on the sites of the SQC, we obtain a
scatterer field on Ed :

s(x) =
∑

	∈�

α	(φ − 	⊥)δ(x − 	) (1)

with α	(x⊥) being the characteristic function of α	. This form of the scatterer field can be
generalized for the case where α is a generic uniformly continuous map from � into L1; the
scattering strength of a site may now depend on the ‘colour’ of the site. This generalized
scatterer field is point diffractive because it can be approximated in any precision in the
supremum norm by one of its quasiperiodic approximant. Thus, an SQC is a perfectly ordered
structure with a long-range order. An SQC is, in fact, a model set. This is shown by identifying
α with the set {(α	, 	) | 	 ∈ �}( ⊂ E⊥

d × �
)
, which is basically a window in the theory of the

model set [9].
The Fourier module of the SQC is given by �∗

∞, and each Bragg spot is indexed by
(2d + 1) integers; the last index specifies the superlattice order n. We should emphasize that
the Fourier module of S(L, α, φ) is determined solely by L, the super-Bravais-lattice. The
Fourier transform of the distribution, equation (1), is a distribution in E∗

d :

s∗(Q) =
∑

	∗∈�∗∞

α∗
	∗(−(	∗)⊥)δ(Q − 	∗), (2)

where α∗ stands for a map from �∗
∞ into L1 defined on (E∗

d )
⊥. Since A ⊂ L1, we can define

an average over a set of hyperatoms. Then, for n ∈ N, we can define naturally the nth order
averaged hypercrystal, in which the hyperatom assigned to 	̂ ∈ �̂n is the average over all the
hyperatoms on the residue class 	̂ + �̂n. It can be readily shown that the Fourier transform
of the scatterer field of the averaged QC is identical to the one obtained from equation (2) by
restricting the summand to �∗

n. This allows us to determine the map α∗.
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Figure 1. An octagonal SQC, S, associated with a tiling produced by a substitution rule for the
three kinds of tiles. The bottom left corner is the centre of the exact octagonal symmetry. This
centre is the origin of E2. A part of its inflation, σ8S, is shown with thick lines at the bottom left,
while a part of the double inflation, (σ8)

2S = (2 +
√

2)S, is at the bottom right.

An SQC has always a self-similarity in the sense that it includes a subset which is
geometrically similar to itself. Its proof is basically similar to the one which was made in [14]
for the case of uniform hyperatoms. The key concept in the proof is Pisot maps. A similarity
transformation σ is called a Pisot map if |σ⊥| < 1; this implies |σ | > 1 because
m = (|σ ||σ⊥|)d � 1. The map, ϕ, is a Pisot map because |ϕ⊥| = τ−1 < 1. Since
ϕG(�1) = G(�1),G(�1) includes an infinite number of Pisot maps. A similar subset of
S := S(L, α, 0) is written as S1 := σS with σ ∈ G(�1) being a Pisot map [14]. We may say
that the SQC, S, is strongly self-similar if it and its inflation, S1, are mutually locally derivable
(MLD: for MLD see [13]). This is not necessarily the case for a generic α. Regrettably, we
have yet found no condition for α such that a strongly self-similar SQC is obtained. A weak
self-similarity is of no physical interest as discussed in [14].

Since S1 ⊂ �1, the inflated SQC come only from one of m submodules into which �

is divided. More generally, the nth inflation, Sn := σnS, is a subset of �n. This is in sharp
contrast to the case of a QC, for which the inflated QC come evenly from different submodules
on account of ϕ� = �. The self-similarity ratio |σ | (or its square |σ |2) is a Pisot number in
Z[τ ] if the map σ is of the type I (or II). However, it is not a unit in contrast to the self-similarity
ratio of a QC. In particular, the smallest value of |σ | is given by |σ8|, |σ10|τ or 1 +

√
3 for the

case of the 2D point group Dp with p = 8, 10 or 12, respectively. It should be emphasized
that self-similarity of an SQC as well as a QC is a natural consequence of its NCPS.

A limit-quasiperiodic tiling produced by a substitution rule is necessarily strongly self-
similar. Properties of 2D and 3D tilings of this type have been extensively investigated in
[6], and a recursion formula determining the Fourier transform of the relevant scatterer field
is presented. A limit-quasiperiodic tiling is considered to be an SQC only if it has an NCPS.
However, such a tiling has not been known so far3.

We have discovered a few examples of substitution rules which generate SQCs. The
simplest of them is the octagonal SQC in figure 1 (cf [15]). The relevant SSM is given by σ8�.

3 A tiling in [15] is approximately an SQC but its ‘octagonal symmetry’ is broken as pointed out in [14].
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We have not yet determined the exact form of the relevant map, α, of this SQC. Our preliminary
investigation strongly indicates, however, that the hyperatoms are topologically discs with
fractal boundaries. Strong Bragg spots of the SQC are located on �∗, the Fourier module of
an octagonal QC, while those on 
n, n > 0 are all weak; the latter are superlattice reflections
in the terminology of crystallography. Interestingly, we have noted that the distribution of
Bragg spots exhibits a pattern strongly reflecting the symmetry of σ8.

The section, Ss , of the octagonal SQC in figure 1 through the horizontal line at the
bottom yields a 1D limit-quasiperiodic tiling with two intervals, S and L, whose lengths satisfy
|L|/|S| = √

2. The tiling is produced by the substitution rule: S → SLS,L → LSSL. It is,
alternatively, given as a section of a 2D limit-periodic structure which is a 2D section of the
relevant supercrystal, S. On the other hand, the projection, Sp, of the octagonal SQC onto the
same line is identical to Ss/

√
2, which is a section of a 2D limit-periodic structure given as a

2D projection of S. Conversely, a 2D SQC can be constructed by the grid method from a 1D
LQPS. It is readily shown that the relevant hyperatoms are polygons.

The present theory is readily extended to the case of the icosahedral point group in 3D.
Only the type I SSMs concern this case, and the index of an icosahedral SSM, ν�, is given by
m = [N(ν)]3.

There exists a bijection between the infinite set, B, and the set of all the super-Bravais-
lattices on a single-Bravais-lattice, �̂, which is the host lattice of QCs. This means that the
world of SQCs is far richer than that of QCs, which is contrary to a previous conception.
SQCs together with QCs form an important class of aperiodic-ordered structures with non-
crystallographic point symmetries.
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